development trends for peptide therapeutics

THE FIRST COMPREHENSIVE QUANTITATIVE ANALYSIS OF PEPTIDE THERAPEUTICS IN CLINICAL DEVELOPMENT
THE FIRST COMPREHENSIVE QUANTITATIVE ANALYSIS OF PEPTIDE THERAPEUTICS IN CLINICAL DEVELOPMENT

Compile everything known about every peptide that has ever been tested in a human, then analyze and develop compelling insights.
Peptide Database

- 531 compounds in the dataset
- Up to 60 data points/parameters per compound
- Data from publicly available information sources

Data collected
- Chemical information
- Molecular Pharmacology (target, MoA)
- Clinical Status/Phase Transition
- Therapeutic Indications
- Companies

Inclusion
- Synthetic peptide of any length
- Recombinant peptide <50aa
- Hybrid molecule/conjugate with discrete peptide domain

Exclusion
- Epitope-specific vaccines
- Bacterial fermentation products
- New formulations/uses of an already-included peptide

Insulin is excluded
Therapeutic Peptide Timeline

Cumulative peptide approvals

Peptides entering clinical study

Peptides entering clinical study: 5-year trailing average

Year

Number of Peptides

0 10 20 30 40 50 60 70 80
Peptide Therapeutics

64 Therapeutic Peptides approved in US and/or Europe

- Most recent peptide drug approvals:

163 Peptides in Active Development
Peptide Diversity

<table>
<thead>
<tr>
<th>Type</th>
<th>Analog</th>
<th>Native</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>31aa / 4114 M.W.</td>
<td>8aa / 1046 M.W.</td>
</tr>
<tr>
<td>Conjugated?</td>
<td>Yes - lipid</td>
<td>No</td>
</tr>
<tr>
<td>Target</td>
<td>GLP1R</td>
<td>AT1R</td>
</tr>
<tr>
<td>Target Class</td>
<td>GPCR-B</td>
<td>GPCR-A</td>
</tr>
<tr>
<td>MoA</td>
<td>Agonist</td>
<td>Agonist</td>
</tr>
<tr>
<td>Therapeutic Area</td>
<td>Metabolic</td>
<td>Critical care</td>
</tr>
<tr>
<td>RoA</td>
<td>s.c. weekly</td>
<td>Continuous i.v.</td>
</tr>
<tr>
<td>IND → Approval</td>
<td>~ 10.5 years</td>
<td>~3.5 years</td>
</tr>
</tbody>
</table>
Properties of Development Peptides

- Number of amino acids
- Conjugated vs. Non-conjugated
- Molecular Targets
- Duration of Development
- Likelihood of Phase Progression
- Top-Selling Peptide Drugs
Size and Conjugation

Length of Peptides Entering Clinical Trials

Time Period of Entry into Clinical Trials

Amino Acids
- 2 to 10
- 11 to 20
- 21 to 30
- 31 to 40
- 41 to 50
- >50
- Unknown

Fused/conjugated/complexed to protein
Lipidated
PEGylated/conjugated to other synthetic polymer
Radiolabeled
All other/unknown conjugates
Conjugated to Peptide

Area of pie chart is proportional to % conjugation in each time period
Molecular Target Classes

Target Classes of Peptides Entering Development

- **2010-present**
 - GPCR
 - Catalytic and other Ig-family receptors
 - Anti-microbial targets
 - Ion channels
 - Other extracellular targets
 - Intracellular targets/unknown

- **2000s**
 - GPCR
 - Catalytic and other Ig-family receptors
 - Anti-microbial targets
 - Ion channels
 - Other extracellular targets
 - Intracellular targets/unknown

- **1990s**
 - GPCR
 - Catalytic and other Ig-family receptors
 - Anti-microbial targets
 - Ion channels
 - Other extracellular targets
 - Intracellular targets/unknown

Percentage of Peptides Entering Clinical Trials
GPCR Modalities

GPCR Modalities for All Development Peptides

1990s

2000s

2010-present

- GPCR-A agonist
- GPCR-A antagonist
- GPCR-B agonist
- GPCR-B antagonist
Molecular Targets

All-Time Top Targets for All Development Peptides

<table>
<thead>
<tr>
<th>Target</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP-1 receptor</td>
<td>53</td>
</tr>
<tr>
<td>GnRH receptor</td>
<td>22</td>
</tr>
<tr>
<td>SST receptors</td>
<td>17</td>
</tr>
<tr>
<td>MC receptors</td>
<td>15</td>
</tr>
<tr>
<td>AMY receptors</td>
<td>12</td>
</tr>
<tr>
<td>NPR-A</td>
<td>11</td>
</tr>
<tr>
<td>Ghrelin receptor</td>
<td>10</td>
</tr>
<tr>
<td>Glucagon receptor</td>
<td></td>
</tr>
<tr>
<td>Amylase receptors</td>
<td></td>
</tr>
<tr>
<td>TRH receptors</td>
<td></td>
</tr>
<tr>
<td>MC receptors</td>
<td></td>
</tr>
<tr>
<td>CXCR4</td>
<td></td>
</tr>
<tr>
<td>Ghrelin receptor</td>
<td></td>
</tr>
<tr>
<td>CD36</td>
<td></td>
</tr>
</tbody>
</table>

By Decade

<table>
<thead>
<tr>
<th>Era</th>
<th>1990’s</th>
<th>2000’s</th>
<th>2010’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>GnRH receptor</td>
<td>6</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>AMY receptors</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>TRH receptors</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>MC receptors</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>GLP-1 receptor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTH1 receptor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC receptors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST receptors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnRH receptor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXCR4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghrelin receptor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: each peptide is assigned a single target in the database
Clinical Development Time

Peptides approved since 2010

Peptide	Year
Tesamorelin	2017
Lucinactant	2017
Pasireotide	2017
Carfilzomib	2017
Linaclotide	2015
Teduglutide	2015
Lixisenatide	2015
Albiglutide	2014
Dulaglutide	2014
Afamelanotide	2014
Etelcalcetide	2014
Plecanatide	2014
Abaloparatide	2014
Oxodotretotide	2013
Semaglutide	2013
LJPC-501	2013

Median development time for peptides approved since 2010: ~10.4 years
Clinical Development Time

Peptides that Entered the Clinic since 1990

N=35 approved peptides

Median duration of development: ~8 years
Likelihood of Approval

Sources: CMR 2016; FRI Peptide Database (PTX DB)
NBE: new biological entity; NCE: new chemical entity
Current Phase 3 Peptides

- Forigerimod
- Omiganan
- NGR-hTNF
- Timbetasin
- Difelikefalin
- Glepaglutide
- Dusquetide
- NA-1
- Vosoritide
- Setmelanotide
- Murepavadin
- Relamorelin
- Dasiglucagon
- Efpeglenatide
- APL-2
- Voclosporin
- PXL-01
- ACT-1
- Rapastinel
- Elamipretide
- Reltecomod
- BL-8040
- TDM-621
- B2A

Glepaglutide
Source: Zealand Investor Slides

Rapastinel

Source: Zealand Investor Slides
Current Phase 3 Peptides

Presented at PTS, 2006-present

- Forigerimod
- Omiganan
- NGR-hTNF
- Timbetasin
- Difelikefalin
- Glepaglutide
- Dusquetide
- NA-1
- Vosoritide
- Setmelanotide
- Murepavadin
- Relamorelin
- Dasiglucagon
- Efpeglenatide
- APL-2
- Voclosporin
- PXL-01
- ACT-1
- Rapastinel
- Elamipretide
- Reltecimod
- BL-8040
- TDM-621
- B2A
What next?
Continue to Develop and Apply Technology to Defy Conventional Wisdom

- Short half life → Innovative HLE strategies
- Parenteral administration → Oral delivery
- Peripheral restriction → Cell- and brain-penetrating peptides
- Polypharmacy

Sources: TRULICITY website; *Lancet* 2018 (doi: 10.1016/S0140-6736(18)32260-8)
It’s astonishing that to this day, we’re still discovering hormones that we didn’t know existed.

— Brian J. Feldman, endocrinologist, Stanford University

“Hormones reveal the secret life of fat cells”, C&EN 96, Oct 6, 2018
Opportunities for Discovery?

“New” Endocrine Organs

Adipokines

- Adiponectin
- IL-6
- MCP-1
- TNF-α
- Leptin
- PAI-1
- Resistin
- Apelin
- Visfatin
- WAT
- Adipocyte
- Blood vessel

Cardiokines

Heart Peptides

- Natriuretic peptides [19-24]
- Ghrelin [26-28]
- Relaxin [26]
- Neuregulin-1 [26]
- Galanin [32]
- Endothelins [37]
- Glucagon-like peptide-1 [25, 26]
- Adrenomedullins [29, 30]
- Apelin [31]
- Oxytocin [33, 34]
- CCK [35, 36]
- Angiotensins [38]

Sakarai and Kizaki, *Int. J. Endo*, 2013

Takahashi and Herzig, *Peptides*, in press
Summary

- Peptide therapeutics are diverse, despite perceptions of niche application
- Technological advances → broader utility and new applications
- New discoveries (targets, hormones) → continuing opportunity
- Stay tuned: More breakthroughs to come!
Acknowledgements

Contributors to Peptide Database

FRI
- Jolene Lau
- Phan Nguyen
- Steve Hoffmaster
- Rob Meadows

University of Lille
- Andre Tartar
- Philippe Pechon
- Pauline Saladin
- Laura Batique
- Benedicte Paladini

PTF
- Pierre Riviere
- Janice Reichert
- Adrienne Day